DocumentCode :
285613
Title :
A modified Hebbian learning rule for total least-squares estimation with complex-valued arguments
Author :
Gao, Keqin ; Ahmad, M. Omair ; Swamy, M.N.S.
Author_Institution :
Dept. of Electr. & Comput. Eng., Concordia Univ., Montreal, Que., Canada
Volume :
3
fYear :
1992
fDate :
10-13 May 1992
Firstpage :
1231
Abstract :
A constrained anti-Hebbian algorithm that is used for processing complex signals is presented. It is shown that the algorithm adaptively extracts the eigenvector associated with the smallest eigenvalue of the correlation matrix of the input signal. The operation of the algorithm is simple, similar to that of the LMS (least mean square) algorithm, and it can be applied to an adaptive prediction-error filter directly, giving an estimate of the parameters that is optimal in the total least-squares sense. Simulation results on estimating the frequencies of sinusoids corrupted by white noise are presented
Keywords :
Hebbian learning; adaptive filters; eigenvalues and eigenfunctions; filtering and prediction theory; least squares approximations; signal processing; Hebbian learning rule; adaptive prediction-error filter; complex signal processing; constrained antiHebbian algorithm; eigenvalue; eigenvector; input signal correlation matrix; neural nets; sinusoid frequencies; total least-squares estimation; white noise; Adaptive filters; Algorithm design and analysis; Filtering algorithms; Finite impulse response filter; Hebbian theory; Neurons; Parameter estimation; Signal processing; Signal processing algorithms; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems, 1992. ISCAS '92. Proceedings., 1992 IEEE International Symposium on
Conference_Location :
San Diego, CA
Print_ISBN :
0-7803-0593-0
Type :
conf
DOI :
10.1109/ISCAS.1992.230302
Filename :
230302
Link To Document :
بازگشت