DocumentCode
285651
Title
A class of lossless nonlinear dynamical systems computing eigenvalues
Author
Huper, Knut ; Paul, Steffen
Author_Institution
Inst. for Network Theory & Circuit Design, Tech. Univ. Munich, Germany
Volume
4
fYear
1992
fDate
3-6 May 1992
Firstpage
1636
Abstract
The electrical networks described model a nonlinear dynamical system, the finite nonperiodic Toda lattice. Iterative eigenvalue and singular value algorithms can be extended to ordinary differential equations and in this way an alternative to digital implementations can be offered. These differential equations and their properties are presented. One basic step for finding a VLSI-suited analog circuit realization is to design network models. Several models for diagonalization of symmetric tridiagonal matrices are proposed. The class of circuits discussed has some properties such as invariants like losslessness or polynomial-type nonlinearity
Keywords
analogue circuits; eigenvalues and eigenfunctions; iterative methods; matrix algebra; nonlinear systems; VLSI; analog circuit realization; diagonalization; eigenvalues; electrical networks; finite nonperiodic Toda lattice; lossless nonlinear dynamical systems; ordinary differential equations; polynomial-type nonlinearity; singular value algorithms; symmetric tridiagonal matrices; Analog circuits; Computer networks; Differential equations; Eigenvalues and eigenfunctions; Electronic mail; Lattices; Linear algebra; Nonlinear dynamical systems; Nonlinear equations; Polynomials;
fLanguage
English
Publisher
ieee
Conference_Titel
Circuits and Systems, 1992. ISCAS '92. Proceedings., 1992 IEEE International Symposium on
Conference_Location
San Diego, CA
Print_ISBN
0-7803-0593-0
Type
conf
DOI
10.1109/ISCAS.1992.230364
Filename
230364
Link To Document