• DocumentCode
    2858467
  • Title

    Incorporating geometric uncertainties into dose calculations with convolution: the effect of spatial invariance

  • Author

    Craig, Tim ; Battista, Jerry ; Van Dyk, Jake

  • Author_Institution
    Dept. of Phys., Univ. of Western Ontario, London, Ont., Canada
  • Volume
    4
  • fYear
    2000
  • fDate
    2000
  • Firstpage
    3253
  • Abstract
    Convolution methods have been incorporated into dose calculations to model the effect of geometric uncertainties on the dose received. These methods assume spatial invariance of the dose distribution, although it is known that this is violated in practice. The magnitudes of the resulting errors are not well documented. The authors specifically address the issue of spatial invariance due to tissue inhomogeneities and surface contours. They accomplished this by comparing two approaches. First, the uncertainty in beam positioning was modeled with a Gaussian distribution. A static dose distribution (with surface and inhomogeneity corrections) was calculated and was convolved with the Gaussian to yield a “blurred” dose distribution incorporating the uncertainties. Second, the dose was calculated using a finite number of spatially displaced individual beams (each calculated with surface and inhomogeneity corrections) weighted by the same Gaussian for their displacement from the static beam position. The difference between the results of the two methods indicates the error in the convolution method. This analysis was performed for four phantoms with various surface curvature and internal inhomogeneities. Significant differences are observed due to the effect of surface curvature, while the errors due to internal inhomogeneities appear to be minor. It is concluded that for convolution algorithms to be of clinical use, the inaccuracy due to the effect of surface curvature needs to be addressed
  • Keywords
    Gaussian distribution; convolution; dosimetry; modelling; convolution algorithms; dose calculations; geometric uncertainties incorporation; inhomogeneity corrections; spatial invariance effect; spatially displaced individual beams; static dose distribution; surface contours; surface curvature effect; tissue inhomogeneities; Biomedical applications of radiation; Convolution; Gaussian distribution; Imaging phantoms; Performance analysis; Predictive models; Probability density function; Solid modeling; Uncertainty;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Engineering in Medicine and Biology Society, 2000. Proceedings of the 22nd Annual International Conference of the IEEE
  • Conference_Location
    Chicago, IL
  • ISSN
    1094-687X
  • Print_ISBN
    0-7803-6465-1
  • Type

    conf

  • DOI
    10.1109/IEMBS.2000.901660
  • Filename
    901660