DocumentCode :
2859159
Title :
Subspace identification of multivariable LPV systems: a novel approach
Author :
Van Wingerden, Jan-Willem ; Verhaegen, Michel
Author_Institution :
Delft Center for Syst. & Control, Delft Univ. of Technol., Delft
fYear :
2008
fDate :
3-5 Sept. 2008
Firstpage :
840
Lastpage :
845
Abstract :
In this paper we present a novel algorithm to identify LPV systems with affine parameter dependence. Ideas from closed-loop LTI subspace identification are used to formulate the input-output behavior of an LPV system. From this input-output behavior the LPV equivalent of the Markov parameters can be estimated. We show that with this estimate the product between the observability matrix and state sequence can be reconstructed and an SVD can be used to estimate the state sequence and consequently the system matrices. The curse of dimensionality in subspace LPV identification will appear and the kernel method is proposed as a partial remedy. The working of the algorithm is illustrated with two simulation examples.
Keywords :
Markov processes; closed loop systems; linear systems; multivariable control systems; observability; parameter estimation; singular value decomposition; Markov parameters; SVD; closed-loop LTI subspace identification; linear parameter varying system; linear time invariant system; multivariable LPV systems; observability matrix; state sequence; Aerospace industry; Control systems; Interpolation; Job shop scheduling; Kernel; Observability; Parameter estimation; State estimation; USA Councils; Wind turbines; Identification; Linear Parameter-Varying systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer-Aided Control Systems, 2008. CACSD 2008. IEEE International Conference on
Conference_Location :
San Antonio, TX
Print_ISBN :
978-1-4244-2221-0
Type :
conf
DOI :
10.1109/CACSD.2008.4627340
Filename :
4627340
Link To Document :
بازگشت