Title :
The Algorithm that Determines the Start Iteration of the Halley-Altman Method
Author :
Cira, Octavian ; Cira, Cristian Mihai
Author_Institution :
Univ. of Arad, Arad
Abstract :
The paper is devoted to the Ostrowski-Kantorovich type convergence theorem for the Halley-Altman method, with the S-order of convergence equal to 3, for nonlinear operator equations in Banach spaces. The main result of the article is the algorithm that determines the start iteration from the cubic convergence sphere of the Halley-Altman method. The Mathcad implementation treats the finite dimensional case.
Keywords :
Banach spaces; convergence of numerical methods; iterative methods; mathematical operators; nonlinear equations; Banach spaces; Halley-Altman method; Mathcad; Ostrowski-Kantorovich type convergence theorem; cubic convergence sphere; nonlinear operator equations; start iteration; Computer science; Convergence of numerical methods; Hafnium; Jacobian matrices; Mathematics; Noise measurement; Nonlinear equations; Scientific computing; Tensile stress;
Conference_Titel :
Symbolic and Numeric Algorithms for Scientific Computing, 2007. SYNASC. International Symposium on
Conference_Location :
Timisoara
Print_ISBN :
978-0-7695-3078-8
DOI :
10.1109/SYNASC.2007.25