DocumentCode :
2859534
Title :
Heteroscedastic Projection Based M-Estimators
Author :
Subbarao, Raghav ; Meer, Peter
Author_Institution :
Rutgers University
fYear :
2005
fDate :
25-25 June 2005
Firstpage :
38
Lastpage :
38
Abstract :
Robust regression methods, such as RANSAC, suffer from a sensitivity to the scale parameter used for generating the inlier-outlier dichotomy. Projection based M-estimators (pbM) offer a solution to this by reframing the regression problem in a projection pursuit framework. In this paper we modify the pbM formulation to obtain an improved pbM algorithm. Furthermore, the modified algorithm is easily generalized to handle heteroscedastic data . The superior performance of heteroscedastic pbM, as compared to simple pbM, is experimentally verified.
Keywords :
Computer Society; Computer errors; Computer vision; Maximum likelihood estimation; Noise robustness; Parameter estimation; Pattern recognition; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition - Workshops, 2005. CVPR Workshops. IEEE Computer Society Conference on
Conference_Location :
San Diego, CA, USA
ISSN :
1063-6919
Print_ISBN :
0-7695-2372-2
Type :
conf
DOI :
10.1109/CVPR.2005.467
Filename :
1565336
Link To Document :
بازگشت