Title :
Gist: A Mobile Robotics Application of Context-Based Vision in Outdoor Environment
Author :
Siagian, Christian ; Itti, Laurent
Author_Institution :
University of Southern California, Los Angeles
Abstract :
We present context-based scene recognition for mobile robotics applications. Our classifier is able to differentiate outdoor scenes without temporal filtering relatively well from a variety of locations at a college campus using a set of features that together capture the "gist" of the scene. We compare the classification accuracy of a set of scenes from 1551 frames filmed outdoors along a path and dividing them to four and twelve different legs while obtaining a classifi- cation rate of 67.96 percent and 48.61 percent, respectively. We also tested the scalability of the features by comparing the classification results from the previous scenes with four legs with a longer path with eleven legs while obtaining a classification rate of 55.08 percent. In the end, some ideas are put forth to improve the theoretical strength of the gist features.
Keywords :
Application software; Computer science; Computer vision; Layout; Leg; Mobile robots; Robot sensing systems; Robot vision systems; Scalability; Sonar navigation;
Conference_Titel :
Computer Vision and Pattern Recognition - Workshops, 2005. CVPR Workshops. IEEE Computer Society Conference on
Conference_Location :
San Diego, CA, USA
Print_ISBN :
0-7695-2372-2
DOI :
10.1109/CVPR.2005.465