DocumentCode :
2860744
Title :
Threshold Estimation Based on Perona-Malik Model
Author :
Shao, Hui ; Zou, Hailin
Author_Institution :
Sch. of Comput. Sci. & Technol., Ludong Univ., Yantai, China
fYear :
2009
fDate :
11-13 Dec. 2009
Firstpage :
1
Lastpage :
4
Abstract :
The selectivity of diffusion mechanism and parameters is the key in the field of image nonlinear diffusion filtering based on Perona-Malik model. The threshold estimation of the diffusion function depends mainly on the experience in the existing methods. In this paper, the relationship between the image features, the noise variance and the threshold are analyzed, and a new threshold estimation method is proposed, the test results show it is effective.
Keywords :
filtering theory; image denoising; Perona-Malik model; diffusion mechanism selectivity; image denoising; image features; image nonlinear diffusion filtering; noise variance; threshold estimation method; Analysis of variance; Anisotropic magnetoresistance; Computer science; Filtering; Image analysis; Image processing; Noise reduction; Nonlinear equations; Smoothing methods; White noise;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Intelligence and Software Engineering, 2009. CiSE 2009. International Conference on
Conference_Location :
Wuhan
Print_ISBN :
978-1-4244-4507-3
Electronic_ISBN :
978-1-4244-4507-3
Type :
conf
DOI :
10.1109/CISE.2009.5366025
Filename :
5366025
Link To Document :
بازگشت