Title :
The equation for a product of solutions of two second-order linear ODEs
Author :
Slavyanov, S.Yu.
Author_Institution :
St. Petersburg State Univ.
Abstract :
The following problem is studied. Consider two linear homogeneous second-order ordinary differential equations of the form ry´´+r´y´=fy (eqn.1) and ru´´+r´u´=gu (eqn.2). These equations are chosen to be formally self-adjoint. The function υ(z) is defined as a product of the arbitrary solutions y(z) and g(z) of these equations. υ:=yu. It is assumed that the functions r(z), f(z), and g(z) are analytical functions. Moreover, if applications to special functions are studied then r(z) may be taken a polynomial, and f(z) g(z) are fractions of two polynomials. The question arises: what is the differential equation for which the function υ(z) is a solution? A more sophisticated question is: is there a differential equation for which singularities are located only at the points where singularities of eqs. 1 and 2 are? These are discussed
Keywords :
electromagnetic wave scattering; linear differential equations; polynomials; linear homogeneous second-order ordinary differential equations; polynomial; second-order linear ODE; singularities; Differential equations; Integral equations; Polynomials;
Conference_Titel :
Day on Diffraction Millenniuym Workshop, 2000. International Seminar
Conference_Location :
St. Petersburg
Print_ISBN :
5-7997-0252-4
DOI :
10.1109/DD.2000.902370