• DocumentCode
    2863852
  • Title

    Optimal mesh signal transforms

  • Author

    Zhang, Hao ; Blok, Hendrik C.

  • Author_Institution
    Sch. of Comput. Sci., Simon Fraser Univ., Burnaby, BC, Canada
  • fYear
    2004
  • fDate
    2004
  • Firstpage
    373
  • Lastpage
    378
  • Abstract
    We describe a simple autoregressive model for 3D mesh geometry based on linear prediction. Assuming a Gaussian error term, we show that the resulting probabilistic distribution is a multivariate Gaussian, which may be singular. Furthermore, if the prediction operator is symmetric positive semi-definite, then its eigenvectors coincide with that of the covariance matrix for the distribution. This implies that the mesh signal transform induced by the prediction operator is optimal, with respect to a specific class of mesh distributions and in the sense of basis restriction errors.
  • Keywords
    Gaussian distribution; Karhunen-Loeve transforms; autoregressive processes; computational geometry; covariance matrices; eigenvalues and eigenfunctions; linear predictive coding; mathematical operators; mesh generation; spectral analysis; 3D mesh geometry; Gaussian error term; autoregressive model; covariance matrix; eigenvectors; linear prediction; mesh distributions; multivariate Gaussian; optimal mesh signal transforms; prediction operator; probabilistic distribution; restriction errors; symmetric positive semidefinite; Discrete Fourier transforms; Discrete transforms; Eigenvalues and eigenfunctions; Geometry; Image coding; Karhunen-Loeve transforms; Laplace equations; Signal analysis; Signal processing; Solid modeling;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Geometric Modeling and Processing, 2004. Proceedings
  • Print_ISBN
    0-7695-2078-2
  • Type

    conf

  • DOI
    10.1109/GMAP.2004.1290063
  • Filename
    1290063