Title :
Atomic wedgie: efficient query filtering for streaming time series
Author :
Wei, Li ; Keogh, Eamonn ; Van Herle, Helga ; Mafra-Neto, Agenor
Author_Institution :
Dept. of Comput. Sci. & Eng., California - Riverside Univ., CA, USA
Abstract :
In many applications, it is desirable to monitor a streaming time series for predefined patterns. In domains as diverse as the monitoring of space telemetry, patient intensive care data, and insect populations, where data streams at a high rate and the number of predefined patterns is large, it may be impossible for the comparison algorithm to keep up. We propose a novel technique that exploits the commonality among the predefined patterns to allow monitoring at higher bandwidths, while maintaining a guarantee of no false dismissals. Our approach is based on the widely used envelope-based lower bounding technique. Extensive experiments demonstrate that our approach achieves tremendous improvements in performance in the offline case, and significant improvements in the fastest possible arrival rate of the data stream that can be processed with guaranteed no false dismissal.
Keywords :
data mining; query processing; time series; atomic wedgie; envelope-based lower bounding; query filtering; time series streaming; Cardiology; Computer science; Computerized monitoring; Costs; Filtering; Insects; Matched filters; Patient monitoring; Space technology; XML;
Conference_Titel :
Data Mining, Fifth IEEE International Conference on
Print_ISBN :
0-7695-2278-5
DOI :
10.1109/ICDM.2005.28