DocumentCode
2865713
Title
A Science Cloud Resource Provisioning Model Using Statistical Analysis of Job History
Author
Kim, Seoyoung ; Koh, Jung-in ; Kim, Yoonhee ; Kim, Chongam
Author_Institution
Dept. of Comput. Sci., Sookmyung Women´´s Univ., Seoul, South Korea
fYear
2011
fDate
12-14 Dec. 2011
Firstpage
792
Lastpage
793
Abstract
The advent of cloud computing makes scientists to extend their research environments over supercomputers to on-demand and dynamically scalable resources. Science cloud becomes a trend in various scientific domains these days. However, it is difficult to provide optimal job execution environment rapidly and dynamically depending on user´s demands. Therefore, it is very important to predict user´s requirements and to prepare execution environment in advance. In addition, it needs scheduling mechanisms for virtual machines to provide some level of guaranteed performance of a user application. In this paper, we propose a cloud resource provisioning model using statistical analysis of job history. In this model, we use job history which is generated from many application executions and identifies characteristics of an application by applying statistical analysis. We utilize a statistical technique, PCA (Principal Component Analysis), to analyze execution history of applications and to extract the factors which contribute much to execution time. The effective factors are used for selecting reference job profile and then VM is deployed on the selected node based on the reference profile. An application is executed on chosen nodes and its performance result is incorporated into job history with the purpose of evaluating profile´s credit. As a result, this model can provide efficient management of cloud resource for a service provider and reduce management overhead on cloud.
Keywords
cloud computing; principal component analysis; resource allocation; scheduling; virtual machines; PCA; VM; cloud computing; job history; optimal job execution environment; principal component analysis; scheduling mechanism; science cloud resource provisioning model; statistical analysis; supercomputer; virtual machine; Algorithm design and analysis; Analytical models; History; Predictive models; Principal component analysis; Stability analysis; Job history; Principal component Analysis; Resource provisioning; Science Cloud;
fLanguage
English
Publisher
ieee
Conference_Titel
Dependable, Autonomic and Secure Computing (DASC), 2011 IEEE Ninth International Conference on
Conference_Location
Sydney, NSW
Print_ISBN
978-1-4673-0006-3
Type
conf
DOI
10.1109/DASC.2011.134
Filename
6118902
Link To Document