DocumentCode :
2865720
Title :
A framework for semi-supervised learning based on subjective and objective clustering criteria
Author :
Halkidi, M. ; Gunopulos, D. ; Kumar, N. ; Vazirgiannis, M. ; Domeniconi, C.
fYear :
2005
fDate :
27-30 Nov. 2005
Abstract :
In this paper, we propose a semi-supervised framework for learning a weighted Euclidean subspace, where the best clustering can be achieved. Our approach capitalizes on user-constraints and the quality of intermediate clustering results in terms of its structural properties. It uses the clustering algorithm and the validity measure as parameters.
Keywords :
learning (artificial intelligence); pattern clustering; objective clustering criteria; semisupervised learning; subjective clustering criteria; weighted Euclidean subspace; Clustering algorithms; Constraint optimization; Data mining; Euclidean distance; Organizing; Partitioning algorithms; Semisupervised learning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Mining, Fifth IEEE International Conference on
ISSN :
1550-4786
Print_ISBN :
0-7695-2278-5
Type :
conf
DOI :
10.1109/ICDM.2005.4
Filename :
1565745
Link To Document :
بازگشت