Title :
Triple jump acceleration for the EM algorithm
Author :
Huang, Han-Shen ; Yang, Bou-Ho ; Hsu, Chun-Nan
Author_Institution :
Inst. of Inf. Sci., Acad. Sinica, Taipei, Taiwan
Abstract :
This paper presents the triple jump framework for accelerating the EM algorithm and other bound optimization methods. The idea is to extrapolate the third search point based on the previous two search points found by regular EM. As the convergence rate of regular EM becomes slower, the distance of the triple jump is longer, and thus provide higher speedup for data sets where EM converges slowly. Experimental results show that the triple jump framework significantly outperforms EM and other acceleration methods of EM for a variety of probabilistic models, especially when the data set is sparse. The results also show that the triple jump framework is particularly effective for cluster models.
Keywords :
expectation-maximisation algorithm; extrapolation; optimisation; pattern clustering; search problems; EM algorithm; bound optimization; third search point extrapolation; triple jump acceleration; Acceleration; Bayesian methods; Clustering algorithms; Convergence; Extrapolation; Gaussian processes; Hidden Markov models; Information science; Optimization methods; Switches;
Conference_Titel :
Data Mining, Fifth IEEE International Conference on
Print_ISBN :
0-7695-2278-5
DOI :
10.1109/ICDM.2005.146