• DocumentCode
    286736
  • Title

    Complex-valued radial basis function networks

  • Author

    Chen, S. ; Grant, P.M. ; McLaughlin, S. ; Mulgrew, B.

  • Author_Institution
    Edinburgh Univ., UK
  • fYear
    1993
  • fDate
    25-27 May 1993
  • Firstpage
    148
  • Lastpage
    152
  • Abstract
    The complex radial basis function (RBF) network proposed has complex centres and weights but the response of its hidden nodes remains real. Several learning algorithms for the existing real RBF network are extended to this complex network. The proposed network is capable of generating complicated nonlinear decision surface or approximating an arbitrary nonlinear function in multidimensional complex space and it provides a powerful tool for nonlinear signal processing involving complex signals. This is demonstrated using two practical applications to communication systems. The first case considers the equalisation of time-dispersive communication channels, and the authors show that the underlying Bayesian solution has an identical structure to the complex RBF network. In the second case, they use the complex RBF network to model nonlinear channels, and this application is typically found in channel estimation and echo cancellation involving nonlinear distortion
  • Keywords
    learning (artificial intelligence); neural nets; signal processing; telecommunication channels; Bayesian solution; channel estimation; complex radial basis function networks; echo cancellation; hidden nodes; learning algorithms; multidimensional complex space; nonlinear decision surface; nonlinear signal processing; time-dispersive communication channels;
  • fLanguage
    English
  • Publisher
    iet
  • Conference_Titel
    Artificial Neural Networks, 1993., Third International Conference on
  • Conference_Location
    Brighton
  • Print_ISBN
    0-85296-573-7
  • Type

    conf

  • Filename
    263238