DocumentCode :
286746
Title :
Valid generalization in radial basis function networks and modified Kanerva models
Author :
Holden, S.B.
Author_Institution :
Cambridge Univ., UK
fYear :
1993
fDate :
25-27 May 1993
Firstpage :
100
Lastpage :
104
Abstract :
The Vapnik-Chervonenkis (VC) dimension has in recent years been successfully applied to the analysis of generalization in artificial neural networks of various types. The author presents an investigation of the VC dimension of radial basis function networks and of a related quantity, called the growth function, of modified Kanerva models
Keywords :
generalisation (artificial intelligence); neural nets; Vapnik-Chervonenkis dimension; generalization; growth function; modified Kanerva models; neural networks; radial basis function networks;
fLanguage :
English
Publisher :
iet
Conference_Titel :
Artificial Neural Networks, 1993., Third International Conference on
Conference_Location :
Brighton
Print_ISBN :
0-85296-573-7
Type :
conf
Filename :
263248
Link To Document :
بازگشت