Title :
An Innovative Self-Adaptive Configuration Optimization System in Cloud Computing
Author :
Jiang, Jing ; Lu, Jie ; Zhang, Guangquan
Author_Institution :
Center for Quantum Comput. & Intell. Syst., Univ. of Technol. Sydney, Broadway, NSW, Australia
Abstract :
Cloud computing has emerging as an extremely popular and cost-effective computational service model using pay-as-you-go executing environments that scale transparently to the user. However, cloud providers should tackle the challenge of configuring their systems to provide maximal performance while minimizing customer´s cost of computing resources, which satisfy the customers´ various workload requirements. To solve the above challenge, in this paper, we propose an innovative architecture of self-adaptive configuration optimization system which supports dynamic reconfiguration when workloads change. In addition, we develop an optimization algorithm by using genetic algorithm for this system. By using queuing theory and statistic techniques, we model and compute the SLAs metrics which are defined as the fitness function in the optimization algorithm. This optimization system can guide cloud customers to purchase appropriate resources and make decision of deployment configuration such as scale, scheduling and capacity.
Keywords :
cloud computing; genetic algorithms; queueing theory; statistical analysis; cloud computing; computational service model; computing resources; genetic algorithm; innovative architecture; innovative selfadaptive configuration optimization system; queuing theory; statistic techniques; Analytical models; Cloud computing; Computational modeling; Measurement; Optimization; Predictive models; Throughput; SLAs; cloud computing; cloud service configuration; optimization; resource scheduling;
Conference_Titel :
Dependable, Autonomic and Secure Computing (DASC), 2011 IEEE Ninth International Conference on
Conference_Location :
Sydney, NSW
Print_ISBN :
978-1-4673-0006-3
DOI :
10.1109/DASC.2011.112