DocumentCode :
2872500
Title :
Dynamic branch prediction with perceptrons
Author :
Jiménez, Daniel A. ; Lin, Calvin
Author_Institution :
Dept. of Comput. Sci., Texas Univ., Austin, TX, USA
fYear :
2001
fDate :
2001
Firstpage :
197
Lastpage :
206
Abstract :
This paper presents a new method for branch prediction. The key idea is to use one of the simplest possible neural networks, the perceptron, as an alternative to the commonly used two-bit counters. Our predictor achieves increased accuracy by making use of long branch histories, which are possible becasue the hardware resources for our method scale linearly with the history length. By contrast, other purely dynamic schemes require exponential resources. We describe our design and evaluate it with respect to two well known predictors. We show that for a 4K byte hardware budget our method improves misprediction rates for the SPEC 2000 benchmarks by 10.1% over the gshare predictor. Our experiments also provide a better understanding of the situations in which traditional predictors do and do not perform well. Finally, we describe techniques that allow our complex predictor to operate in one cycle
Keywords :
neural nets; parallel architectures; perceptrons; program compilers; 4K byte hardware budget; branch prediction; dynamic branch prediction; hardware resources; neural networks; perceptrons; purely dynamic schemes; Accuracy; Computer architecture; Counting circuits; Hardware; History; Modems; Neural networks; Parallel processing; Prefetching; Space exploration;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
High-Performance Computer Architecture, 2001. HPCA. The Seventh International Symposium on
Conference_Location :
Monterrey
ISSN :
1530-0897
Print_ISBN :
0-7695-1019-1
Type :
conf
DOI :
10.1109/HPCA.2001.903263
Filename :
903263
Link To Document :
بازگشت