• DocumentCode
    2874005
  • Title

    Multilevel fast multipole algorithm for mixed combined-field integral equations

  • Author

    Su Yan ; Jian-Ming Jin ; Zaiping Nie

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
  • fYear
    2013
  • fDate
    7-13 July 2013
  • Firstpage
    252
  • Lastpage
    253
  • Abstract
    In solving the magnetic-field integral equation (MFIE) with the method of moments (MoM), the Buffa-Christiansen (BC) function is shown to be a better testing function than the Rao-Wilton-Glisson (RWG) function, since it produces a numerical solution with a much better accuracy while maintaining the same iterative convergence. As a result, the numerical accuracy and efficiency of the mixed discretization of the combined-field integral equation (CFIE) are also better than that of the Galerkin discretization. In this paper, the solution of the mixed CFIE is accelerated by employing the multilevel fast multipole algorithm (MLFMA). In order to preserve the similar accuracy as MoM, special care needs to be taken in the implementation of MLFMA.
  • Keywords
    Galerkin method; computational electromagnetics; electromagnetic wave scattering; iterative methods; magnetic field integral equations; method of moments; Buffa-Christiansen function; CFIE; Galerkin discretization; MFIE; MLFMA; MoM; RWG function; Rao-Wilton-Glisson function; iterative convergence; magnetic field integral equation; method of moments; mixed combined field integral equations; multilevel fast multipole algorithm; numerical accuracy;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Antennas and Propagation Society International Symposium (APSURSI), 2013 IEEE
  • Conference_Location
    Orlando, FL
  • ISSN
    1522-3965
  • Print_ISBN
    978-1-4673-5315-1
  • Type

    conf

  • DOI
    10.1109/APS.2013.6710787
  • Filename
    6710787