Title :
Modeling and Learning Context-Aware Recommendation Scenarios Using Tensor Decomposition
Author :
Wermser, Hendrik ; Rettinger, Achim ; Tresp, Volker
Author_Institution :
Tech. Univ. Munchen, Garching, Germany
Abstract :
The task of recommending items, like movies, to users is a core feature of many social networks. Standard approaches either use item or user similarity to suggest the next items users might be interested in. Recently, multivariate models like matrix factorization have become popular to combine the advantages of both perspectives. In addition, extensions have been proposed to capture the dynamics of user interests over time, like trends or recurrent user needs. While offering good predictive performance, so far those models do not exploit possibly available rich semantic context. Typically, only one implicit feature, like user ratings, is tracked to give personalized recommendations. However, with semantic data sources, like linked data, wealthy background knowledge becomes available that could be leveraged to improve predictive performance. We argue, that a more flexible framework is needed to model and learn a greater class of recommendation scenarios where rich context is available. Thus, we propose a generic approach which generalizes state-of-the-art methods based on pair wise interaction tensor factorization by leveraging arbitrary background knowledge related to the recommendation situation. Our experiments on streamed semantic data from a social network show that by adding varying sets of context - like user information, sequential information or time information - the ranking of potential items can be personalized and the predictive performance can be improved.
Keywords :
matrix decomposition; recommender systems; social networking (online); tensors; ubiquitous computing; arbitrary background knowledge; context-aware recommendation scenario learning; generic approach; matrix factorization; multivariate models; pairwise interaction tensor factorization; personalized recommendations; recurrent user needs; semantic context; semantic data sources; semantic data streaming; sequential information; social networks; tensor decomposition; Context; Context modeling; Motion pictures; Semantics; Social network services; Tensile stress; Training data; Collaborative Filtering; Recommender Systems; Tensor Decomposition;
Conference_Titel :
Advances in Social Networks Analysis and Mining (ASONAM), 2011 International Conference on
Conference_Location :
Kaohsiung
Print_ISBN :
978-1-61284-758-0
Electronic_ISBN :
978-0-7695-4375-8
DOI :
10.1109/ASONAM.2011.56