Title :
MultiAspectForensics: Pattern Mining on Large-Scale Heterogeneous Networks with Tensor Analysis
Author :
Maruhashi, Koji ; Guo, Fan ; Faloutsos, Christos
Author_Institution :
Fujitsu Labs. Ltd., Kawasaki, Japan
Abstract :
Modern applications such as web knowledge base, network traffic monitoring and online social networks have made available an unprecedented amount of network data with rich types of interactions carrying multiple attributes, for instance, port number and time tick in the case of network traffic. The design of algorithms to leverage this structured relationship with the power of computing to assist researchers and practitioners for better understanding, exploration and navigation of this space of information has become a challenging, albeit rewarding, topic in social network analysis and data mining. The constantly growing scale and enriching genres of network data always demand higher levels of efficiency, robustness and generalizability where existing approaches with successes on small, homogeneous network data are likely to fall short. We introduce MultiAspectForensics, a handy tool to automatically detect and visualize novel sub graph patterns within a local community of nodes in a heterogenous network, such as a set of vertices that form a dense bipartite graph whose edges share exactly the same set of attributes. We apply the proposed method on three data sets from distinct application domains, present empirical results and discuss insights derived from these patterns discovered. Our algorithm, built on scalable tensor analysis procedures, captures spectral properties of network data and reveals informative signals for subsequent domain-specific study and investigation, such as suspicious port-scanning activities in the scenario of cyber-security monitoring.
Keywords :
computer forensics; computer network security; data mining; graph theory; social networking (online); telecommunication traffic; tensors; bipartite graph; cyber-security monitoring; data mining; data sets; generalizability; homogeneous network data; large-scale heterogeneous networks; multiaspect forensics; pattern mining; robustness; social network analysis; suspicious port-scanning activities; tensor analysis; Arrays; Data mining; Histograms; IP networks; Knowledge based systems; Servers; Tensile stress; heterogeneous networks; pattern mining; tensor analysis;
Conference_Titel :
Advances in Social Networks Analysis and Mining (ASONAM), 2011 International Conference on
Conference_Location :
Kaohsiung
Print_ISBN :
978-1-61284-758-0
Electronic_ISBN :
978-0-7695-4375-8
DOI :
10.1109/ASONAM.2011.80