DocumentCode :
2875627
Title :
Recursive Gabor filtering
Author :
Young, Ian T. ; van Vliet, Lucas J. ; Van Ginkel, M.
Author_Institution :
Dept. of Appl. Phys., Delft Univ. of Technol., Netherlands
Volume :
3
fYear :
2000
fDate :
2000
Firstpage :
338
Abstract :
We present a recursive algorithm for the Gabor filter that achieves, to within a multiplicative constant, the fastest possible implementation. For a signal consisting of N samples, our implementation requires O(N) multiply-and-add operations. Further, the complexity is and coefficients of the recursive equation have a simple independent of the values of σ and ω in the Gabor kernel closed-form solution given σ and ω. Our implementation admits not only a forward Gabor transform from t→ω but an inverse transform from ω→t that is also O(N) complexity
Keywords :
Gaussian processes; IIR filters; computational complexity; filtering theory; image processing; Gabor filtering; Gaussian filtering; IIR filters; closed-form solution; computational complexity; inverse transform; recursive algorithm; Convolution; Digital filters; Filtering; Fourier transforms; Gabor filters; IIR filters; Kernel; Laplace equations; Pattern recognition; Polynomials;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2000. Proceedings. 15th International Conference on
Conference_Location :
Barcelona
ISSN :
1051-4651
Print_ISBN :
0-7695-0750-6
Type :
conf
DOI :
10.1109/ICPR.2000.903554
Filename :
903554
Link To Document :
بازگشت