DocumentCode :
2879663
Title :
Nonlinear Cross Prediction Analysis of Water Vapor Time Series with Fractal Interpolation
Author :
Deng, Xiaobo ; Pang, Zongyuan ; Ding, Jilie ; Liu, Hailei ; Zhang, Shenglan
Author_Institution :
Key Lab. of Atmos. Sounding, Chengdu Univ. of Inf. Technol., Chengdu, China
fYear :
2012
fDate :
1-3 June 2012
Firstpage :
1
Lastpage :
3
Abstract :
A nonlinear cross prediction method is taken to analyze change characteristics of water vapor time series. Fractal interpolation method is used to deal with remote sensing data. The cross prediction error is used to detect the sign of coming rainstorm, which forecast the occurrence of heavy rain, the experiment result shows the fractal interpolation is effective for preprocessing satellite remote sensing data.
Keywords :
atmospheric humidity; atmospheric techniques; fractals; interpolation; rain; remote sensing; storms; fractal interpolation method; heavy rain effect; nonlinear cross prediction analysis; rainstorm; satellite remote sensing data; water vapor time series; Fractals; Interpolation; Prediction algorithms; Rain; Remote sensing; Time series analysis; Water;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Remote Sensing, Environment and Transportation Engineering (RSETE), 2012 2nd International Conference on
Conference_Location :
Nanjing
Print_ISBN :
978-1-4673-0872-4
Type :
conf
DOI :
10.1109/RSETE.2012.6260639
Filename :
6260639
Link To Document :
بازگشت