• DocumentCode
    2883345
  • Title

    Improved acoustic modeling based on selective data-driven PMC

  • Author

    Kim, Wooil ; Ko, Hanseok

  • Author_Institution
    Korea University, Republic of Korea
  • Volume
    4
  • fYear
    2002
  • fDate
    13-17 May 2002
  • Abstract
    This paper proposes an effective method to remedy the acoustic modeling problem inherent in the usual log-normal PMC intended for achieving robust speech recognition. In particular, the Gaussian kernels under the prescribed log-normal PMC cannot sufficiently express the corrupted speech distributions. The proposed scheme corrects this deficiency by judicially selecting the “fairly” corrupted component and by re-estimating it as a mixture of two distributions using data-driven PMC. As a result, some components become merged while equal number of components split. The determination for splitting or merging is achieved by means of measuring the similarity of corrupted speech model to those of clean model and noise model. The experimental results indicate that the suggested algorithm is effective in representing the corrupted speech distributions and attains consistent improvement over various SNR and noise cases.
  • Keywords
    Feature extraction; Robustness; Visualization;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE International Conference on
  • Conference_Location
    Orlando, FL, USA
  • ISSN
    1520-6149
  • Print_ISBN
    0-7803-7402-9
  • Type

    conf

  • DOI
    10.1109/ICASSP.2002.5745631
  • Filename
    5745631