DocumentCode :
2883359
Title :
Auditory-modeling inspired methods of feature extraction for robust automatic speech recognition
Author :
Jing, Zhinian ; Hasegawa-Johnson, Mark
Author_Institution :
University of Illinois, United States
Volume :
4
fYear :
2002
fDate :
13-17 May 2002
Abstract :
This paper proposes a technique of extracting robust feature vectors for ASR. The technique is inspired by work related to auditory modeling. It involves first filtering the speech signal through a bank of band-pass filters, which are based on a model of the human cochlea. Autocorrelation functions (ACF) are computed on the filters´ outputs. Then the individual ACFs are scaled by their corresponding voice indices (VIs), which use information related to the pitch. A summed ACF is then obtained by summing the individual ACFs across the bands. Feature vectors are then computed using standard cepstral analysis, by treating the summed ACF as a regular ACF. Finally, frame indices (FIs) weigh the feature vectors in the time domain. The effectiveness of the proposed techniques, compared to LPCC and MFCC, are demonstrated by comparing the results obtained from simple recognition experiments.
Keywords :
Acoustics; Robustness; Visualization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE International Conference on
Conference_Location :
Orlando, FL, USA
ISSN :
1520-6149
Print_ISBN :
0-7803-7402-9
Type :
conf
DOI :
10.1109/ICASSP.2002.5745632
Filename :
5745632
Link To Document :
بازگشت