DocumentCode :
2884127
Title :
Structures for phase classification
Author :
Lau, Jeremy ; Schoemackers, S. ; Calder, Brad
Author_Institution :
Dept. of Comput. Sci. & Eng., California Univ., San Diego, CA, USA
fYear :
2004
fDate :
2004
Firstpage :
57
Lastpage :
67
Abstract :
Most programs are repetitive, where similar behavior can be seen at different execution times. Proposed algorithms automatically group these similar intervals of execution into phases, where all he intervals in a phase have homogeneous behavior and similar resource requirements. In this paper we examine different program structures for capturing phase behavior. The goal is to compare the size and accuracy of these structures for performing phase classification. We focus on profiling the frequency of program level structures that are independent from underlying architecture performance metrics. This allows the phase classification to be used across different hardware designs that support the same instruction set (ISA). We compare using basic blocks, loop branches, procedures, opcodes, register usage, and memory address information for guiding phase classification. We compare these different structures in terms of their ability to create homogeneous phases, and evaluate the accuracy of using these structures to pick simulation points for SimPoint.
Keywords :
instruction sets; program compilers; program control structures; SimPoint; architecture performance metrics; basic blocks; hardware designs; loop branches; memory address information; opcodes; phase classification; program behavior; program profiling; program structures; register usage; same instruction set; Analytical models; Atomic measurements; Computer science; Frequency; Hardware; Instruction sets; Performance analysis; Phase detection; Registers; Statistics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Performance Analysis of Systems and Software, 2004 IEEE International Symposium on - ISPASS
Print_ISBN :
0-7803-8385-0
Type :
conf
DOI :
10.1109/ISPASS.2004.1291356
Filename :
1291356
Link To Document :
بازگشت