• DocumentCode
    288423
  • Title

    Estimation and learning of network parameters in semiparametric stochastic perceptron

  • Author

    Kawanabe, Motoaki ; Amari, Shun-ichi

  • Author_Institution
    Dept. of Math. Eng. & Inf. Phys., Tokyo Univ., Japan
  • Volume
    2
  • fYear
    1994
  • fDate
    27 Jun-2 Jul 1994
  • Firstpage
    787
  • Abstract
    Kabashima and Shinomoto found (1992) that estimators of a binary decision boundary show asymptotically strange behaviors when the probability model is ill-posed or semiparametric. We give a rigorous analysis of this phenomenon in a stochastic perceptron by using the estimating function method. It is shown that there exists no estimator of threshold parameter h which converges to the true value in the order of 1/√n as the number n of observations increases. Instead we propose asymptotic estimating functions and analyze the asymptotics of the estimators therefrom
  • Keywords
    decision theory; learning (artificial intelligence); parameter estimation; perceptrons; stochastic processes; asymptotic estimating functions; asymptotically strange behaviors; binary decision boundary; ill-posed probability model; neural network parameter estimation; neural network parameter learning; semiparametric probability model; semiparametric stochastic perceptron; Equations; Intelligent networks; Mathematical model; Maximum likelihood detection; Maximum likelihood estimation; Neurons; Parameter estimation; Physics; Probability distribution; Stochastic processes;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Neural Networks, 1994. IEEE World Congress on Computational Intelligence., 1994 IEEE International Conference on
  • Conference_Location
    Orlando, FL
  • Print_ISBN
    0-7803-1901-X
  • Type

    conf

  • DOI
    10.1109/ICNN.1994.374278
  • Filename
    374278