DocumentCode :
2884251
Title :
Log-amplitude cumulants and parameter estimation for Beck-Cohen superstatistics
Author :
Kiyono, K.
Author_Institution :
Grad. Sch. of Eng. Sci., Osaka Univ., Toyonaka, Japan
fYear :
2013
fDate :
24-28 June 2013
Firstpage :
1
Lastpage :
4
Abstract :
To characterize non-Gaussian stochastic processes, we introduce log-amplitude cumulants which is capable of quantifying systematic deviations from a Gaussian distribution. The advantages of the log-amplitude statistics are that even in the case of heavy tailed distributions with infinite variance, such as Lévy stable distributions and q-Gaussian distributions with q > 5/3, all the log-amplitude cumulants take finite values, and that these statistics can be easily estimated from observed time series. As an application of our approach, we derive closed-form expressions of log-amplitude cumulants for non-Gaussian distributions appearing in Beck-Cohen superstatistics based on gamma, inverse gamma, log-normal and F-distributions. In addition, we propose parameter estimation method for the superstatistical distributions.
Keywords :
Gaussian distribution; higher order statistics; log normal distribution; parameter estimation; Beck-Cohen superstatistics; F-distribution; Levy stable distributions; closed-form expressions; infinite variance; inverse gamma distribution; log-amplitude cumulants; log-amplitude statistics; log-normal distribution; nonGaussian stochastic process; parameter estimation; q-Gaussian distributions; systematic deviations; log-amplitude statistics; non-Gaussian distribution; superstatistics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Noise and Fluctuations (ICNF), 2013 22nd International Conference on
Conference_Location :
Montpellier
Print_ISBN :
978-1-4799-0668-0
Type :
conf
DOI :
10.1109/ICNF.2013.6578910
Filename :
6578910
Link To Document :
بازگشت