• DocumentCode
    288485
  • Title

    Prediction error of stochastic learning machine

  • Author

    Ikeda, Kazushi ; Murata, Noboru ; Amari, Shun-Ichi

  • Author_Institution
    Fac. of Eng., Tokyo Univ., Japan
  • Volume
    2
  • fYear
    1994
  • fDate
    27 Jun-2 Jul 1994
  • Firstpage
    1159
  • Abstract
    The more the number of training examples included, the better a learning machine will behave. It is an important to know how fast and how well the behavior is improved. The average prediction error is one of the most popular criteria to evaluate the behavior. We have regarded the machine learning from the point of view of parameter estimation and derived the average prediction error of stochastic dichotomy machines by the information geometrical method
  • Keywords
    error statistics; learning by example; learning systems; maximum likelihood estimation; neural nets; parameter estimation; information geometrical method; maximum likelihood estimation; parameter estimation; prediction error; probability distribution; stochastic dichotomy machines; stochastic learning machine; training examples; Machine learning; Parameter estimation; Signal generators; Stochastic processes; Testing; Tiles;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Neural Networks, 1994. IEEE World Congress on Computational Intelligence., 1994 IEEE International Conference on
  • Conference_Location
    Orlando, FL
  • Print_ISBN
    0-7803-1901-X
  • Type

    conf

  • DOI
    10.1109/ICNN.1994.374346
  • Filename
    374346