DocumentCode :
2888176
Title :
Biodiversity assessment using hierarchical clustering over hyperspectral images
Author :
Medina, Ory ; Manian, Vidya ; Chinea, J. Danilo
Author_Institution :
Comput. & Inf. Sci. & Eng., Univ. of Puerto Rico at Mayaguez, Mayaguez, Puerto Rico
fYear :
2012
fDate :
4-7 June 2012
Firstpage :
1
Lastpage :
4
Abstract :
Hyperspectral images represent an important source of information to assess ecosystem biodiversity. In particular, plant species richness is a primary indicator of biodiversity. This paper aims to use spectral variance to predict vegetation richness, known as Spectral Variation Hypothesis. A hierarchical clustering method based on minimum spanning tree computations retrieve clusters whose Shannon entropy reflects the species richness on a given zone. These entropies correlate well with the ones calculated directly from field data.
Keywords :
biology computing; botany; ecology; hyperspectral imaging; pattern clustering; statistical analysis; trees (mathematics); Shannon entropy; biodiversity assessment; ecosystem biodiversity; hierarchical clustering method; hyperspectral images; minimum spanning tree computations; plant species richness; spectral variance; spectral variation hypothesis; vegetation richness; Abstracts; Biosensors; Ecosystems; Indexes; Sensor phenomena and characterization; Vegetation; Biodiversity; Clustering; Hyperspectral Images; Minimum Spanning Tree;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2012 4th Workshop on
Conference_Location :
Shanghai
Print_ISBN :
978-1-4799-3405-8
Type :
conf
DOI :
10.1109/WHISPERS.2012.6874320
Filename :
6874320
Link To Document :
بازگشت