DocumentCode :
2890348
Title :
On New Sufficient Conditions for the Schur D-Stability of Discrete Dynamic Interval Systems
Author :
Li, Yong-wei ; Han, Jin-fang ; Hu, Shi-qiang
Author_Institution :
Hebei Univ. of Sci. & Technol.
fYear :
2006
fDate :
13-16 Aug. 2006
Firstpage :
1558
Lastpage :
1560
Abstract :
In this paper, the schur D-stability problem of discrete dynamic interval systems is studied based on the matrix eigenvalues theory, some new sufficient conditions are obtained which can guarantee the schur D-stability of discrete dynamic interval systems. The equivalence relation between the schur D-stability and schur stability of discrete dynamic interval systems is established
Keywords :
control system synthesis; discrete systems; eigenvalues and eigenfunctions; equivalence classes; matrix algebra; discrete dynamic interval systems; equivalence relation; matrix eigenvalues theory; schur D-stability problem; Computer aided analysis; Control system analysis; Cybernetics; Eigenvalues and eigenfunctions; Machine learning; Robust stability; Stability analysis; Sufficient conditions; Sun; Upper bound; Discrete dynamic systems; Eigenvalues theory; Interval matrices; Schur D-stability;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning and Cybernetics, 2006 International Conference on
Conference_Location :
Dalian, China
Print_ISBN :
1-4244-0061-9
Type :
conf
DOI :
10.1109/ICMLC.2006.258828
Filename :
4028312
Link To Document :
بازگشت