DocumentCode :
2891168
Title :
A Strong Law of Large Numbers for Set-Valued Random Variables in Rademacher Type P Banach Space
Author :
Guan, Li ; Li, Shou-mei
Author_Institution :
Dept. of Appl. Math., Beijing Univ. of Sci. & Technol.
fYear :
2006
fDate :
13-16 Aug. 2006
Firstpage :
1768
Lastpage :
1773
Abstract :
In this paper, we shall prove the strong law of large numbers (SLLN) for set-valued random variables in the sense of dH, and the basic space being Rademacher type p(1lesples2) Banach space. This kind of SLLN is the extension of classical SLLN´s for Xi-valued random variables and it also implies previous SLLN´s results for set-valued random variables
Keywords :
Banach spaces; probability; random processes; set theory; Banach space; Rademacher type; set-valued random variable; strong law; Cybernetics; Machine learning; Mathematics; Random variables; Space technology; Rademacher type p; set-valued random variables; strong law of large numbers;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning and Cybernetics, 2006 International Conference on
Conference_Location :
Dalian, China
Print_ISBN :
1-4244-0061-9
Type :
conf
DOI :
10.1109/ICMLC.2006.258978
Filename :
4028351
Link To Document :
بازگشت