DocumentCode :
2891287
Title :
Separation Axioms in ω-Molecular Lattices
Author :
Chen, Shui-Li
Author_Institution :
Dept. of Math., Jimei Univ., Fujian
fYear :
2006
fDate :
13-16 Aug. 2006
Firstpage :
1801
Lastpage :
1805
Abstract :
In this paper, the concepts of ωTi(i = -1, 0, 1, 2) separation axioms, ωθ-closure operator, ωθconvergence, ω*-convergence, (ω1, ω2)-continuity and ω-submolecular lattice in ω-molecular lattices are introduced. Their properties and characterizations are systematically discussed. Some interesting results, such as ωT2 ⇒ωT1 ⇒ ωT0 ⇒ ωT-1 every ωTi(i=-1, 0, 1, 2) separation is hereditary and omega-topological invariant, etc., are given
Keywords :
Boolean algebra; fuzzy logic; topology; ωθ-closure operator; ω*-convergence; ωspl theta/-convergence; molecular lattices; Cybernetics; Lattices; Machine learning; Mathematics; Topology; ω-ML; ω-operator; ωR-neighborhood; Fuzzy lattice; Separation axiom; generalized order-homomorphism; molecule lattice;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning and Cybernetics, 2006 International Conference on
Conference_Location :
Dalian, China
Print_ISBN :
1-4244-0061-9
Type :
conf
DOI :
10.1109/ICMLC.2006.258984
Filename :
4028357
Link To Document :
بازگشت