Title :
Reliable computation with noisy circuits and decision trees-a general n log n lower bound
Author :
Reischuk, Rüdiger ; Schmeltz, Bernd
Author_Institution :
Tech. Hochschule Darmstadt, Germany
Abstract :
Boolean circuits in which gates independently make errors with probability (at most) ε are considered. It is shown that the critical number crit(f) of a function f yields lower bound Ω(crit(f) log crit (f)) for the noisy circuit size. The lower bound is proved for an even stronger computational model, static Boolean decision trees with erroneous answers. A decision tree is static if the questions it asks do not depend on previous answers. The depth of such a tree provides a lower bound on the number of gates that depend directly on some input and hence on the size of a noisy circuit. Furthermore, it is shown that an Ω(n log n) lower bound holds for almost all Boolean n-input functions with respect to the depth of noisy dynamic decision trees. This bound is the best possible and implies that almost all n-input Boolean functions have noisy decision tree complexity Θ(n log n) in the static as well as in the dynamic case
Keywords :
Boolean functions; circuit reliability; computational complexity; decision theory; logic circuits; probability; trees (mathematics); Boolean circuits; Boolean functions; answers; computational model; critical number; erroneous answers; lower bound; noisy circuits; noisy decision tree complexity; noisy dynamic decision trees; questions; static Boolean decision trees; tree depth; Boolean functions; Circuit faults; Circuit noise; Computational modeling; Decision trees; Error probability; Redundancy; Upper bound;
Conference_Titel :
Foundations of Computer Science, 1991. Proceedings., 32nd Annual Symposium on
Conference_Location :
San Juan
Print_ISBN :
0-8186-2445-0
DOI :
10.1109/SFCS.1991.185425