Title :
Monadic theory of term rewritings
Author_Institution :
IRISA, Rennes, France
Abstract :
The monadic second-order theory of term rewritings is considered. It is shown that the monadic theory of the rewriting (or the suffix rewriting) of a ground rewrite system is undecidable. Furthermore, the first-order theory is undecidable for the prefix derivation according to a linear context-free grammar on linear terms. Nevertheless, a new notion on terms with variables is introduced: a term is entire if each of its subterms either is a variable, or is without variable or has the same variables as the term. It is shown that the monadic theory is decidable (respectively undecidable) for the prefix rewriting according to a rewrite system on entire terms, with an axiom (respectively without axiom)
Keywords :
context-free grammars; decidability; rewriting systems; decidability; ground rewrite system; linear context-free grammar; linear terms; monadic second-order theory; prefix derivation; suffix rewriting; term rewritings; Automata; Binary trees; Equations;
Conference_Titel :
Logic in Computer Science, 1992. LICS '92., Proceedings of the Seventh Annual IEEE Symposium on
Conference_Location :
Santa Cruz, CA
Print_ISBN :
0-8186-2735-2
DOI :
10.1109/LICS.1992.185539