DocumentCode :
2895516
Title :
Joint probability density function estimation by spectral estimate methods
Author :
Pages-Zamora, A. ; Lagunas, Miguel A.
Author_Institution :
Dept. de Teoria del Senyal i Comunicacions, Univ. Politecnica de Catalunya, Barcelona, Spain
Volume :
5
fYear :
1996
fDate :
7-10 May 1996
Firstpage :
2936
Abstract :
The estimation of probability density functions (PDFs) of a given random variable (r.v.) is involved in topics related to codification, speech or whenever a short record of data is available but a greater amount is needed. Existing methods go from the so-called minimum description-length method, up to others based on the maximisation of the differential entropy imposing constraints on the moments of the r.v. In this paper we propose to estimate a PDF function by means of spectral estimate methods, since the positiveness and the real character of any PDF function allow us to deal with it as a power spectrum density function. Particularly, the minimum variance method is focused on because it can be generalised to multidimensional problems, being used in this paper to estimate the joint-PDF function of a multidimensional r.v
Keywords :
estimation theory; probability; random processes; spectral analysis; PDF function; codification; joint probability density function estimation; joint-PDF function; minimum variance method; multidimensional problems; multidimensional random variable; power spectrum density function; random variable; short data record; spectral estimate methods; speech; Cost function; Entropy; Equations; Frequency; Multidimensional systems; Probability density function; Random variables; Speech; Telecommunications; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conference Proceedings., 1996 IEEE International Conference on
Conference_Location :
Atlanta, GA
ISSN :
1520-6149
Print_ISBN :
0-7803-3192-3
Type :
conf
DOI :
10.1109/ICASSP.1996.550169
Filename :
550169
Link To Document :
بازگشت