DocumentCode :
2896656
Title :
Evolutionary Composite Attribute Clustering
Author :
Hong, Tzung-Pei ; Song, Wei-Ping ; Chiu, Chu-Tien
Author_Institution :
Dept. of Comput. Sci. & Inf. Eng., Nat. Univ. of Kaohsiung, Kaohsiung, Taiwan
fYear :
2011
fDate :
11-13 Nov. 2011
Firstpage :
305
Lastpage :
308
Abstract :
In this paper, we propose a GA-based clustering method for composite-attribute clustering and feature selection. We have also designed a new chromosome representation, a fitness evaluation function, and an adjustment process in the proposed approach. Experimental results show that the proposed approach with composite attributes performs better than that without composite attributes.
Keywords :
data mining; genetic algorithms; pattern clustering; GA-based clustering method; adjustment process; chromosome representation; evolutionary composite attribute clustering; feature selection; fitness evaluation function; Accuracy; Biological cells; Computer science; Educational institutions; Genetic algorithms; Genetics; Machine learning; Classification; Composite Attribute; Feature Clustering; Feature Selection; Genetic Algorithm;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Technologies and Applications of Artificial Intelligence (TAAI), 2011 International Conference on
Conference_Location :
Chung-Li
Print_ISBN :
978-1-4577-2174-8
Type :
conf
DOI :
10.1109/TAAI.2011.59
Filename :
6120762
Link To Document :
بازگشت