DocumentCode :
2897573
Title :
Robust Low Complexity Feature Tracking using CUDA
Author :
Phull, Rajat ; Mainali, Pradip ; Yang, Qiong ; Sips, Henk ; Lafruit, Gauthier
Author_Institution :
Katholieke Univ. Leuven, Leuven, Belgium
fYear :
2010
fDate :
6-8 Oct. 2010
Firstpage :
362
Lastpage :
367
Abstract :
In this paper, we propose a real-time video processing implementation of a Robust Low Complexity Feature Tracking (RLCT) algorithm on GPU (Graphics Processing Unit) using the CUDA (Compute Unified Device Architecture) paradigm. The RLCT outperforms state-of-the-art implementations of pyramidal KLT (Kanade-Lucas-Tomasi) on GPU by removing the overhead of the image pyramid construction, by predicting the initial tracking location for faster convergence and terminating the tracking once convergence is reached instead of executing for a fixed number of iterations. To track 1000 feature points on images of size 960 × 960, RLCT-CUDA implementation running on a GeForce 280 GTX GPU is ~25 times faster than RLCT on CPU and ~236 times faster than the original pyramidal KLT tracking algorithm on Intel Core 2 Duo 2.66 GHz with 2GB RAM CPU.
Keywords :
computer graphic equipment; coprocessors; multi-threading; parallel architectures; video signal processing; 2GB RAM CPU; CUDA; GeForce 280 GTX GPU; Intel Core 2 Duo 2.66 GHz; Kanade-Lucas-Tomasi; compute unified device architecture; graphics processing unit; image pyramid construction; pyramidal KLT; real-time video processing implementation; robust low complexity feature tracking; Approximation algorithms; Convergence; Graphics processing unit; Instruction sets; Kernel; Target tracking; CUDA; GPU; KLT; Tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing Systems (SIPS), 2010 IEEE Workshop on
Conference_Location :
San Francisco, CA
ISSN :
1520-6130
Print_ISBN :
978-1-4244-8932-9
Electronic_ISBN :
1520-6130
Type :
conf
DOI :
10.1109/SIPS.2010.5624818
Filename :
5624818
Link To Document :
بازگشت