Title :
The Role of Persistent Graphs in the Agreement Seeking of Social Networks
Author :
Guodong Shi ; Johansson, K.H.
Author_Institution :
ACCESS Linnaeus Centre, R. Inst. of Technol., Stockholm, Sweden
Abstract :
This paper investigates the role persistent relations play for a social network to reach a global belief agreement under discrete-time or continuous-time evolution. Each directed arc in the underlying communication graph is assumed to be associated with a time-dependent weight function, which describes the strength of the information flow from one node to another. An arc is said to be persistent if its weight function has infinite L1 or l1 norm for continuous or discrete belief evolutions, respectively. The graph that consists of all persistent arcs is called the persistent graph of the underlying network. Three necessary and sufficient conditions on agreement or ε-agreement are established. We prove that the persistent graph fully determines the convergence to a common opinion in a social network. It is shown how the convergence rate explicitly depends on the diameter of the persistent graph. For a social networking service like Facebook, our results indicate how permanent friendships need to be and what network topology they should form for the network to be an efficient platform for opinion diffusion.
Keywords :
belief networks; convergence; social networking (online); Facebook; agreement seeking; communication graph; continuous-time evolution; convergence rate; directed graphs; discrete-time evolution; global belief agreement; information flow strength; network topology; opinion diffusion; persistent graphs; social networking service; time-dependent weight function; Computational modeling; Convergence; Facebook; Information exchange; Mathematical model; Network topology; Consensus; Dynamical Systems; Non-smooth analysis; Persistent Graphs; Social Networks;
Journal_Title :
Selected Areas in Communications, IEEE Journal on
DOI :
10.1109/JSAC.2013.SUP.0513052