DocumentCode :
2900140
Title :
Numerical Analysis for Stochastic Age-Dependent Population Equations
Author :
Xu, Xin-zhong ; Zhang, Qi-Min
Author_Institution :
Sch. of Math. & Comput. Sci., Ningxia Univ., Yinchuan
fYear :
2006
fDate :
13-16 Aug. 2006
Firstpage :
4331
Lastpage :
4336
Abstract :
A numerical method proposed to approximate the solution of a class of stochastic age-dependent populations. We show that under certain conditions, weaker than linear growth and global Lipschits, the Euler scheme applied to stochastic age-dependent population, converges to the analytic solution, and provide information on the order of approximation
Keywords :
approximation theory; biology; convergence of numerical methods; demography; stochastic processes; Euler scheme; approximation theory; numerical analysis; stochastic age-dependent population equation; Computer science; Convergence of numerical methods; Cybernetics; Equations; Finite difference methods; Hilbert space; Information analysis; Lyapunov method; Machine learning; Mathematics; Nonlinear equations; Numerical analysis; Stability; Stochastic processes; Euler approximation; Lyapunov function; Numerical solution; Stochastic age-dependent population;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning and Cybernetics, 2006 International Conference on
Conference_Location :
Dalian, China
Print_ISBN :
1-4244-0061-9
Type :
conf
DOI :
10.1109/ICMLC.2006.259023
Filename :
4028835
Link To Document :
بازگشت