Title :
An experimental study on the fuel reduction potential of heavy duty vehicle platooning
Author :
Alam, A.A. ; Gattami, Ather ; Johansson, Karl Henrik
Author_Institution :
Scania CV AB, Södertälje, Sweden
Abstract :
Vehicle platooning has become important for the vehicle industry. Yet conclusive results with respect to the fuel reduction possibilities of platooning remain unclear. The focus in this study is the fuel reduction that heavy duty vehicle platooning enables and the analysis with respect to the influence of a commercial adaptive cruise control on the fuel consumption. Experimental results show that by using preview information of the road ahead from the lead vehicle, the adaptive cruise controller can reduce the fuel consumption. A study is undertaken for various masses of the lead vehicle. The results show that the best choice with respect to a heavier or lighter lead vehicle depends on the desired time gap. A maximum fuel reduction of 4.7-7.7% depending on the time gap, at a set speed of 70 km/h, can be obtained with two identical trucks. If the lead vehicle is 10 t lighter a corresponding 3.8-7.4% fuel reduction can be obtained depending on the time gap. Similarly if the lead vehicle is 10 t heavier a 4.3-6.9% fuel reduction can be obtained. All results indicate that a maximum fuel reduction can be achieved at a short relative distance, due to both air drag reduction and suitable control.
Keywords :
adaptive control; road traffic; traffic control; air drag reduction; commercial adaptive cruise control; fuel consumption; fuel reduction potential; heavy duty vehicle platooning; vehicle industry; Drag; Engines; Fuels; Lead; Mathematical model; Roads; Vehicles;
Conference_Titel :
Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on
Conference_Location :
Funchal
Print_ISBN :
978-1-4244-7657-2
DOI :
10.1109/ITSC.2010.5625054