• DocumentCode
    2900880
  • Title

    Unidirectional rotation driven by random fluctuations

  • Author

    Chang, Cheng-Hung ; Tsong, Tian-Yow

  • Author_Institution
    Inst. of Phys., Nat. Chiao-Tung Univ., Hsinchu, Taiwan
  • fYear
    2011
  • fDate
    12-16 June 2011
  • Firstpage
    41
  • Lastpage
    44
  • Abstract
    Ratchet effect might be responsible for the unidirectional movement of a couple of systems. The theoretical study of ratchet mechanism usually focuses on the particle or state properties on a prescribed ratchet potential. In contrast, this work starts with a real system and shows how one can manipulate the system setup to have a ratchet potential for the system state. The model consists of a rotor surrounded by several drivers on a 2D plane. Both the rotor and drivers are furnished with electric dipoles, through which they can interact with each other. During the rotational fluctuations of the driver dipoles between two states, the rotor may rotate unidirectionally, independent of whether the driver fluctuations are periodic or completely random. If the driver fluctuations come from the conformational change of certain protein subunits consuming ATP, the rotor behavior would be similar to the rotation of the central γ subunit of F0F1-ATPase in mitochondria. We compare the rotational properties of our model with that of the flashing ratchet and F0F1-ATPase. This model provides a feasible way for harvesting non-equilibrium energy from ambient noise, which could be used to design microscopic artificial machines.
  • Keywords
    biomechanics; fluctuations; molecular biophysics; proteins; electric dipoles; mitochondria; noise; protein; random fluctuations; ratchet mechanism; rotational fluctuations; rotor; unidirectional rotation; Damping; Energy states; Noise; Rotors; Stochastic processes; Trajectory; Vehicles;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Noise and Fluctuations (ICNF), 2011 21st International Conference on
  • Conference_Location
    Toronto, ON
  • Print_ISBN
    978-1-4577-0189-4
  • Type

    conf

  • DOI
    10.1109/ICNF.2011.5994359
  • Filename
    5994359