DocumentCode :
2901276
Title :
Discrete-time decentralized inverse optimal neural control for a shrimp robot
Author :
Lopez-Franco, Michel ; Sanchez, Edgar N. ; Alanis, Alma Y. ; Arana-Daniel, Nancy
Author_Institution :
CINVESTAV, Jalisco, Mexico
fYear :
2013
fDate :
17-19 June 2013
Firstpage :
1183
Lastpage :
1188
Abstract :
This paper deals with an decentralized inverse optimal neural controller for discrete-time unknown nonlinear systems, in presence of external disturbances and parameter uncertainties. It is based on two techniques: first, an identifier using a discrete-time recurrent high order neural network (RHONN), trained with an extended Kalman filter (EKF) algorithm; second, a controller which on the basis of inverse optimal control to avoid solving the Hamilton Jacobi Bellman (HJB) equation. Computer simulations are presented which illustrate the effectiveness of the proposed tracking control law.
Keywords :
Kalman filters; discrete time systems; inverse problems; mobile robots; multivariable control systems; neurocontrollers; nonlinear control systems; nonlinear filters; optimal control; recurrent neural nets; tracking; uncertain systems; EKF; RHONN; computer simulations; discrete-time decentralized inverse optimal neural control; discrete-time recurrent high order neural network; discrete-time unknown nonlinear systems; extended Kalman filter algorithm; external disturbances; mobile robots; parameter uncertainties; shrimp robot; tracking control law; Mobile robots; Neural networks; Optimal control; Trajectory; Vectors; Wheels; Decentralized Inverse Optimal Neural Control; Mobile Robots; Neural Control; Neural identifier; Recurrent High Order Neural Networks;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference (ACC), 2013
Conference_Location :
Washington, DC
ISSN :
0743-1619
Print_ISBN :
978-1-4799-0177-7
Type :
conf
DOI :
10.1109/ACC.2013.6579996
Filename :
6579996
Link To Document :
بازگشت