DocumentCode :
2901774
Title :
Performance of Quantized Min-Sum Decoding Algorithms for Irregular LDPC Codes
Author :
Oh, Daesun ; Parhi, Keshab K.
Author_Institution :
Dept. of Electr. & Comput. Eng., Minnesota Univ., Minneapolis, MN
fYear :
2007
fDate :
27-30 May 2007
Firstpage :
2758
Lastpage :
2761
Abstract :
This paper analyzes the performance of quantized min-sum decoding algorithms for irregular low-density parity-check (LDPC) codes. For regular LDPC codes, it is known that the normalized or offset min-sum decoding algorithm with quantization bits less than 6 bits achieves good performances over wide range of signal-to-noise ratios (SNR). However, finite precision effects in decoding irregular LDPC codes are different from that in decoding regular LDPC codes which is caused by the difference of convergence speeds between low degree nodes and high degree nodes. This paper proposes a novel method to improve the performance of the conventional normalized or offset min-sum decoding algorithm when it is approximated with finite precision for hardware implementations. The proposed method applies down-scaling factors to intrinsic information which has effects on increasing the reliability of extrinsic information at variable nodes and compensating the quantization errors caused by finite precision. Computer simulation results for irregular LDPC codes show that the proposed normalized and offset min-sum decoding algorithms achieve better performances at high SNR compared to the conventional normalized and offset min-sum algorithms under (6:2) quantization scheme.
Keywords :
parity check codes; quantisation (signal); LDPC codes; down-scaling factors; finite precision effects; hardware implementations; low-density parity-check codes; quantized min-sum decoding algorithms; Algorithm design and analysis; Computer simulation; Convergence; Decoding; Degradation; Hardware; Parity check codes; Performance analysis; Quantization; Signal to noise ratio;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium on
Conference_Location :
New Orleans, LA
Print_ISBN :
1-4244-0920-9
Electronic_ISBN :
1-4244-0921-7
Type :
conf
DOI :
10.1109/ISCAS.2007.378624
Filename :
4253249
Link To Document :
بازگشت