Title :
Hyperbolic Hamiltonian flows and the semi-classical Poincaré map
Author :
Fadhlaoui, H. ; Louati, H. ; Rouleux, M.
Author_Institution :
Dept. de Math., Univ. de Tunis El-Manar, Tunis, Tunisia
Abstract :
We consider semi-excited resonances created by a periodic orbit of hyperbolic type for Schrödinger like operators with a small “Planck constant”. They are defined within an analytic framework based on the semi-classical quantization of Poincaré map in action-angle variables.
Keywords :
Poincare mapping; Schrodinger equation; quantisation (quantum theory); Planck constant; Schrodinger like operators; action-angle variables; analytic framework; hyperbolic Hamiltonian flows; periodic orbit; semi-excited resonances; semiclassical Poincare map; semiclassical quantization; Diffraction; Eigenvalues and eigenfunctions; Energy states; Manifolds; Orbits; Quantization (signal); Space vehicles;
Conference_Titel :
Days on Diffraction (DD), 2013
Conference_Location :
St. Petersburg
Print_ISBN :
978-1-4799-1037-3
DOI :
10.1109/DD.2013.6712803