DocumentCode :
290420
Title :
Accurate estimation of AR model by tapered SVD without rank determination
Author :
Kanai, Hiroshi ; Chubachi, Noriyoshi
Author_Institution :
Dept. of Electr. Eng., Tohoku Univ., Sendai, Japan
Volume :
iv
fYear :
1994
fDate :
19-22 Apr 1994
Abstract :
This paper presents a new method to increase the accuracy in the estimates of the autoregressive (AR) model obtained by the Kumaresan-Tuft (KT) method proposed in 1982. In the KT method, there are the following two problems to be solved. (1) It is necessary to select the appropriate order of the AR-model before truncating the non-significant singular values obtained by the singular-value-decomposition (SVD). (2) There are errors in the selection of the signal- and noise-subspaces, which are determined by the noisy data matrix. Thus, the resultant singular values cannot be neglected even for the higher orders. Thus, truncation of the high order singular values by the predetermined order causes the bias error in the resultant AR parameter estimates. By introducing a tapering window into the truncation of high order non-significant singular values, the mean squared error of the estimates is certainly reduced. This paper also presents a new procedure to design an optimum tapering window for estimating AR model parameters without using any non-linear optimisation procedure
Keywords :
autoregressive processes; matrix decomposition; noise; parameter estimation; singular value decomposition; AR model; AR parameter estimates; Kumaresan-Tuft method; autoregressive model; bias error; estimation accuracy; mean squared error; noise-subspace; noisy data matrix; signal-subspace; singular value decomposition; singular values truncation; tapered SVD; tapering window; Additive noise; Design optimization; Electronic mail; Parameter estimation; Signal restoration; Tiles;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1994. ICASSP-94., 1994 IEEE International Conference on
Conference_Location :
Adelaide, SA
ISSN :
1520-6149
Print_ISBN :
0-7803-1775-0
Type :
conf
DOI :
10.1109/ICASSP.1994.389777
Filename :
389777
Link To Document :
بازگشت