DocumentCode :
290455
Title :
Evolutionary maximum entropy spectral analysis
Author :
Shah, S.I. ; Chaparro, L.F. ; Kayhan, A.S.
Author_Institution :
Dept. of Electr. Eng., Pittsburgh Univ., PA, USA
Volume :
iv
fYear :
1994
fDate :
19-22 Apr 1994
Abstract :
We extend maximum entropy (ME) spectral analysis to non-stationary signals using the theory of the Wold-Cramer evolutionary spectrum. The evolutionary maximum entropy (EME) problem reduces to the fitting of a time-varying autoregressive model to the Fourier coefficients of the evolutionary spectrum. The model parameters are efficiently found by means of the Levinson algorithm. In the non-stationary case it is not the autocorrelation function that provides the appropriate data for the EME analysis, but rather the Fourier coefficients of the evolutionary spectrum. An estimator of these coefficients is proposed. By means of examples we show the EME estimator provides higher frequency resolution and better sidelobe behavior than existing estimators of the evolutionary spectrum
Keywords :
Fourier transforms; autoregressive processes; correlation methods; maximum entropy methods; spectral analysis; Fourier coefficients; Levinson algorithm; autocorrelation function; evolutionary spectrum theory; frequency resolution; maximum entropy spectral analysis; model parameters; non-stationary signals; sidelobe behavior; time-varying autoregressive model; Autocorrelation; Electronic design automation and methodology; Entropy; Fourier transforms; Frequency estimation; Laboratories; Signal analysis; Signal processing; Signal resolution; Spectral analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1994. ICASSP-94., 1994 IEEE International Conference on
Conference_Location :
Adelaide, SA
ISSN :
1520-6149
Print_ISBN :
0-7803-1775-0
Type :
conf
DOI :
10.1109/ICASSP.1994.389819
Filename :
389819
Link To Document :
بازگشت