DocumentCode :
290506
Title :
Fast algorithms for exponential data modeling
Author :
Park, Haesun ; Van Huffel, Sabine ; Eldén, Lors
Author_Institution :
Dept. of Comput. Sci., Minnesota Univ., Minneapolis, MN, USA
Volume :
iv
fYear :
1994
fDate :
19-22 Apr 1994
Abstract :
A new fast algorithm is presented for quantifying signals modeled by a sum of exponentially damped sinusoids. The new algorithm is applied to the quantitative analysis of Nuclear Magnetic Resonance (NMR) data and is shown to be up to an order of magnitude more efficient than currently used linear prediction and state-space based methods
Keywords :
Hankel matrices; biomedical NMR; exponential distribution; matrix decomposition; medical image processing; parameter estimation; Hankel structure; NMR data; exponential data modeling; exponentially damped sinusoids; fast algorithms; linear prediction; state-space based methods; Algorithm design and analysis; Computer science; Frequency estimation; Laboratories; Least squares methods; Magnetic analysis; Mathematics; Matrix decomposition; Nuclear magnetic resonance; Parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1994. ICASSP-94., 1994 IEEE International Conference on
Conference_Location :
Adelaide, SA
ISSN :
1520-6149
Print_ISBN :
0-7803-1775-0
Type :
conf
DOI :
10.1109/ICASSP.1994.389885
Filename :
389885
Link To Document :
بازگشت