DocumentCode
2906322
Title
Noisy input/output system identification using cumulants and the Steiglitz-McBride algorithm
Author
Anderson, John M M ; Giannakis, Georgios B.
Author_Institution
Dept. of Electr. Eng., Virginia Univ., Charlottesville, VA, USA
fYear
1991
fDate
4-6 Nov 1991
Firstpage
608
Abstract
By transforming the input/output system identification problem into the high signal to noise ratio (SNR) cumulant domain, the Steiglitz-McBride algorithm is extended, yielding an autocumulant and cross-cumulant based approach for autoregressive moving average (ARMA) modeling. The autocumulant approach requires that the ARMA parameters be estimated by first estimating the cumulants of the ARMA parameters. The cross-cumulant formulation permits the ARMA parameters to be estimated directly. Possible convergence points and convergence issues are investigated. Simulations are presented to illustrate the performance of these algorithms
Keywords
parameter estimation; signal processing; ARMA parameters; SNR cumulant domain; Steiglitz-McBride algorithm; autocumulant approach; autoregressive moving average; convergence points; cross-cumulant formulation; input/output system identification; parameter estimation; signal processing; signal to noise ratio; Colored noise; Convergence; Econometrics; Frequency estimation; Gaussian noise; Instruments; Noise cancellation; Parameter estimation; Pollution measurement; System identification;
fLanguage
English
Publisher
ieee
Conference_Titel
Signals, Systems and Computers, 1991. 1991 Conference Record of the Twenty-Fifth Asilomar Conference on
Conference_Location
Pacific Grove, CA
ISSN
1058-6393
Print_ISBN
0-8186-2470-1
Type
conf
DOI
10.1109/ACSSC.1991.186520
Filename
186520
Link To Document