DocumentCode :
290672
Title :
Adaptive filtering and estimation of nonlinear biological systems
Author :
Maher, M. ; Dahhou, B. ; Zeng, F.Y.
Author_Institution :
Lab. d´´Autom. et d´´Anal. des Syst., CNRS, Toulouse, France
fYear :
1993
fDate :
17-20 Oct 1993
Firstpage :
235
Abstract :
This paper presents a study of 3 estimation algorithms. They are used to palliate the bioprocess sensors deficiencies which are not able to provide direct real-time measurements. State and parameter estimation algorithms developed mainly for nonlinear biological systems are compared. They are the extended Kalman filter, the method of Dochain and Bastin (1990) and the method of Zeng and Dahhou. Their computational properties are compared and their convergence is tested on a simulated nonlinear fermentation process
Keywords :
adaptive filters; chemical technology; filtering theory; identification; nonlinear systems; adaptive estimation; adaptive filtering; bioprocess sensor deficiencies; computational properties; extended Kalman filter; nonlinear biological systems; parameter estimation; simulated nonlinear fermentation process; state estimation; Adaptive filters; Biological system modeling; Biological systems; Biology computing; Biomass; Biosensors; Carbon dioxide; Computational modeling; Parameter estimation; Plants (biology);
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Systems, Man and Cybernetics, 1993. 'Systems Engineering in the Service of Humans', Conference Proceedings., International Conference on
Conference_Location :
Le Touquet
Print_ISBN :
0-7803-0911-1
Type :
conf
DOI :
10.1109/ICSMC.1993.390715
Filename :
390715
Link To Document :
بازگشت